How to Check Your Answer

While it may be difficult to solve a differential equation, it is fairly easy to see if a proposed solution is correct. Check the following results by plugging the proposed answer into the original equation.

a)
$$y = \frac{1}{3}e^x$$
 is a solution to $4y'' - y = e^x$.

b)
$$y = \frac{1}{x}$$
 is a solution to $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.

How to Check Your Answer

While it may be difficult to solve a differential equation, it is fairly easy to see if a proposed solution is correct. Check the following results by plugging the proposed answer into the original equation.

a)
$$y = \frac{1}{3}e^x$$
 is a solution to $4y'' - y = e^x$.

b)
$$y = \frac{1}{x}$$
 is a solution to $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.

a)
$$4y'' - y = e^{x}$$

$$4\left(\frac{e^{x}}{3}\right) - \left(\frac{1}{3}e^{x}\right)$$

$$= e^{x}$$

$$y = \frac{1}{3}e^{x}$$
 is a solution.

b)
$$\chi^{2} \frac{d^{2}y}{d\chi^{2}} + 3\chi \frac{dy}{d\chi} + y = 0$$
 $y = \frac{1}{\chi}$
 $\chi^{2} \left(\frac{2}{\chi^{2}}\right) + 3\chi \left(-\frac{1}{\chi^{2}}\right) + \left(\frac{1}{\chi}\right)$ $y' = -\frac{1}{\chi^{2}}$, $y'' = \frac{2}{\chi^{2}}$
 $= \frac{2}{\chi} - \frac{3}{\chi} + \frac{1}{\chi}$

=0
$$y = \frac{1}{2} \text{ is a solution.}$$

$$y = \frac{1}{3}e^{x}$$

=> $y' = \frac{1}{3}e^{x}$, $y'' = \frac{1}{3}e^{x}$

$$y = \frac{1}{x}$$

$$y'=-\frac{1}{\chi^{2}}$$
, $y''=\frac{2}{\chi^{3}}$